等价无穷小公式
keneyr
2019-11-03 14:58:38
29140
收藏
16
分类专栏:
数学之美
版权声明:本文为博主原创文章,遵循
CC 4.0 BY-SA
版权协议,转载请附上原文出处链接和本声明。
本文链接:
https://blog.csdn.net/keneyr/article/details/102842137
版权
点赞
12
评论
分享
x
海报分享
扫一扫,分享海报
收藏
16
打赏
打赏
keneyr
老爷~给小的赏点盘缠吧555~
C币
余额
2C币
4C币
6C币
10C币
20C币
50C币
确定
举报
关注
关注
一键三连
点赞Mark关注该博主, 随时了解TA的最新博文
已标记关键词
清除标记
大学常用数学
公式
整理集合大全
03-17
导数
公式
、基本积分
公式
、三角函数的有理式积分、重要极限表、三角函数
公式
、中值定理与导数应用、多元函数微分法及应用、方向导数与梯度、常数项级数、级数收敛法、函数展开成幂级数:泰勒
公式
、微分方程
插入表情
添加代码片
HTML/XML
objective-c
Ruby
PHP
C
C++
JavaScript
Python
Java
CSS
SQL
其它
还能输入
1000
个字符
高等数学
公式
大全(大学)
03-25
高等数学
公式
大全,不错的很.....................................
求极限的
等价
无穷大代换.pdf
10-03
人生有无数的可能性,考研的结果一定不是终点!但做的每一个选择都要坚持到最后!这是对自己、对梦想最大的尊重!用探索方法代替消极迷茫,用寻求技巧抵消杂乱慌张!争分夺秒,竭尽所能!悉心浇灌,静候花开!隧道的
对
等价
无穷小
量代换的思考
02-18
对
等价
无穷小
量代换的思考,郑立飞,,本文通过例子阐明了利用
等价
无穷小
量代换在求极限时会遇到的问题,并通过泰勒
公式
,回答了在有加减的情况下不能随便使用
等价
无穷
高等数学 函数极限求法(三)
等价
无穷小
法
cvper's world !
02-02
1万+
前 面已经了解了函数极限可以通过画函数图像求极限,通过代入方法求极限, 但是有的时候上面的方法也是无法求解函数极限的,本次介绍另外一种函数极限的求法
等价
无穷小
求解函数极限 一、使用
等价
无穷小
的方法求函数极限的前提是记住如下九个
等价
公式
: 1. 我们来看看上面的
公式
是怎么用的,先拿第一个
公式
来解一道例题来说明:
常见
等价
无穷小
linkequa的博客
07-11
2万+
当x→0时,
等价
无穷小
如下当x\to0时,
等价
无穷小
如下当x→0时,
等价
无穷小
如下 1,x∼tanx∼sinx∼arcsinx∼(ex−1)∼arctanx∼ln(1+x)∼ln(x+1+x2)x\sim \tan x\sim \sin x\sim \arcsin x\sim (e^x-1)\sim\arctan x\sim ln(1+x)\sim ln(x+\sqrt{1+x^2})x∼...
高数-极限-求极限值--
等价
无穷小
代换
公式
Jtooo的博客
02-12
5592
无穷小
的比较及性质:
等价
无穷小
代换
公式
如下: 注:
等价
无穷小
只用于乘除,不用于加减。 --------------------------------------------------------------------------------------------分割线-------- 该题运用
无穷小
的性质,极限极限的四则运算,
等价
无穷小
或重要极限来解: ...
高数中常用
等价
无穷小
Leo.Yu的专栏
12-02
5606
当x趋向于0时,有以下重要
等价
无穷小
: sinX~X tanX~X arcsinX~X ln(1+X)~X e^x-1~X a^x-1~Xlna (a>0,a≠1) 1-cosX~1/2X^2 (1+βx)^α-1~αβx (1+x)^a-1~ax ㏒(1+x)~x/ln(a>0,a≠1) ...
几个重要
等价
无穷小
的证明
化简
02-03
2万+
其他
等价
无穷小
的证明会陆续发表在该博文中。。。。。
常见的几个
等价
无穷小
鱼翔浅底水流云,燕语深林柳寻花。
01-29
4322
当时有: 1、sinx~x 2、tanx~x 3、arcsinx~x 4、arctanx~x 5、ln(1+x)~x 6、~x 7、~ 8、~ax 9、~xlna 补充: 1、
等价
无穷小
的定理:两个
无穷小
之比的极限为1; 2、
等价
代换适用于因子,不适用于代数式中的和差; 3、
等价
代换中如果求得因子为0,此时需要变形。一定要避免出现0因子。 ...
微分和积分数学
公式
大全
JKing&CHEN的专栏
01-06
13万+
一、极限
公式
(系数不为0的情况) 二、重要
公式
三、下列常用
等价
无穷小
关系(x->0) 四、导数的四则运算法则 五、基本导数
公式
六、高阶导数的运算法则 七、基本初等函数的n阶导数
公式
总结几个
等价
无穷小
相关的关系运算
Bing's Blog
11-25
3333
总结几个
等价
无穷小
相关的关系运算@(微积分)1)f(x)∼g(x)f(x) \sim g(x), g(x)∼h(x)→f(x)∼h(x)g(x) \sim h(x) \rightarrow f(x)\sim h(x) 2)f′(x)→0,g′(x)→0f'(x)\rightarrow 0,g'(x)\rightarrow 0,则f(x)与g(x)的阶数关系与f′(x)f'(x)和g′(x)g'(x
求极限、
等价
无穷小
zz__dm的博客
09-30
971
python 自带常数E 解答: x = Symbol('x') limit(E,x,0) 解答: x0 = Symbol('x0') #常数可省略 x = Symbol('x') limit(x,x,x0) 解答: x = Symbol('x') limit((2*x-1),x,1) 解答: x = Symbol('x') limit((pow(...
常用导数与
等价
无穷小
春夜喜雨的专栏
06-06
1万+
最近重新复习高等数学,导数是其中一个重要的概念: 体现在几何图形中 一阶导数为图形函数的切线函数,>0反映出y随x递增...;反映到s=vt上,ds/dt=v,一阶导数相当于距离变更量与时间的比值,相当于瞬时速度 二阶导数体现图形函数的凹凸型,>0反映出是凹弧...;反映到s=vt上,v=at,ds/dt=v, dv/dt=a,二阶导数相当于速度变更量与时间的比值,相当于加速度 ...
高等数学中常用的
等价
无穷小
zhaokaifeng.com
06-09
1万+
当 x→0x\rightarrow0x→0 时 (01) sinx∽xsin x \backsim xsinx∽x (02) tanx∽xtan x \backsim xtanx∽x (03) arcsinx∽xarcsin x \backsim xarcsinx∽x (04) arctanx∽xarctan x \backsim xarctanx∽x (05) ln(1+x)∽xln(1+x) ...
©️2020 CSDN
皮肤主题: 终极编程指南
设计师:CSDN官方博客
返回首页